NQb;16443m;¢

<« 7

HOW TO CLUSTER IN PARALLEL WITH NEURAL
NETWORKS

Behzad Kamgar-Parsi

J. A. Gualtieri

Judy E. Devaney

Center for Automation Research Code 635 Science Applications Research
University of Maryland NASA GSFC 4400 Forbes Blvd.
College Park, MD 20742 Greenbelt, MD 20771 Lanham, MD 20706

Behrooz Kamgar-Parsi
Dept. of Computer Science
George Mason University
Fairfax, VA 22030

ABSTRACT

Partitioning a set of N patterns in a d-dimensional met-
ric space into K clusters — in a way that those in a given
cluster are more similar to each other than the rest -
is a problem of interest in astrophysics, image analysis
and other fields. As there are approximately -’f{:— possible
ways of partitioning the patterns among K clusters, find-
ing the best solution is beyond exhaustive search when N
is large. We show that this problem in spite of its expo-
nential complexity can be formulated as an optimization
problem for which very good, but not necessarily opti-
mal, solutions can be found by using a neural network.
To do this the network must start from many randomly
selected initial states. The network is gimulated on the
MPP (a 128x128 SIMD array machine), where we use
the massive parallelism not only in solving the differen-
tial equations that govern the evolution of the network,
but also by starting the network from many initial states
at once thus obtaining many solutions in one run. We
obtain speedups of two to three orders of magnitude over
serial implementations and the promise through Analog
VLSI implementations of speedups comensurate with hu-
man perceptual abilities.

Keywords: Combinatorial Optimigation, Synchronous
Analog Network, Parallel Simulation, SIMD.

INTRODUCTION

Problems that involve data analysis are becoming in-
creasingly severe in that data sets are becoming very large
and their rate of acquisition is growing rapidly. It is clear
that humans possess immense computational power for
solving certain problems through visualization and that
what is needed is the development of algorithms that have
some of these capabilities.

31
CH2649-2/89/0000/0031$01.00 © 1988 IEEE

The value of neural networks — whose development has
been motivated by human beings’ computational capabil-
ities — as a computational device is yet to be explored. In
fact, little is known about the reliability and complexity
of these algorithms, and how they scale with the size of
the problem. The work we present in this paper is an
attempt to answer some of these questions. For this, we
will concentrate on the problem of data clustering — a
problem of interest in astrophysics, image analysis and
other fields. The conjecture is that because of the many
connections among neurons, neural networks should be
particularly useful for the class of problems that involve
collective decision making, of which one example is un-
supervised clustering. Here the patterns must decide to-
gether how to partition themselves into subsets according
to a given criterion. The problem considered here, as in
all partitioning problems, is a discrete optimization with
a goodness-of-fit criterion. By embedding this discrete
problem in the continuous space of an analog network
one can perform a downhill search on the energy surface
which is more purposeful and effective than the search
in the discrete space. Until hardware implementation of
analog neural networks in VLSI become available — which
is expected in the next few years [1] - simulation is going
to be an indispensible tool in the study and design of these
gystems. Analog networks are intrinsically synchronous
and hence well suited for simulation on massively parallel
SIMD machines.

In this paper, we simulate the neural net we propose for
solving the clustering problem on the MPP [a 128x128
SIMD array machine with 1024 bits of local memory per
processor|. The issue of performance of neural net algo-
rithms on parallel machines is also addressed. Before we
proceed, however, we will discuss the clustering problem
in some detail.

PRECEDING PAGE BLAKNK NOT FiLMED

PAGE_ . O INTENIIONALLY BLANK

THE CLUSTERING PROBLEM

By clustering we mean partitioning a set of N patterns
(the patterns are represented as points in a d-dimensional
metric space) into K clusters in a way that those in a
given cluster are more similar to each other than the
rest. As there are approximately -’fg— possible ways of
partitioning the patterns among K clusters (2], the prob-
lem has exponential complexity and finding the best so-
lution is beyond exhaustive search. As is often employed,
we let our criterion for best solution be the minimum
square-error. That is, representing the patterns by d-
dimensional points {7;|{ = 1,..., N}, the best solution
Ly (7 ~ By)? with re-

is the one minimizing x2 = 7
., K}. Here cluster p contains the

spect to {Rplp=1,..
subset of the points, { F}(") }, and its centroid is given by
R, = 0 7P, where N, is the number of points in
the cluster. A partitioning based on such a criterion is
also known as minimum variance partioning. Because of
the complexity of the problem, finding the best solution
may not be possible. This, however, is not a major con-
cern, because in practice usually only a good solution is
sufficient.

Due to the importance of this problem many meth-
ods have been proposed by various researchers. {See Jain
and Dubes (3] for a survey of the literature.) Many of
these approaches are based on iterative schemes and of-
ten the differences between the suggested algorithms are
quite subtle. The number of clusters X may or may not
be fixed. For a given value of K, the essence of iterative
algorithms is as follows.

After the initial partioning of the patterns into K clus-
ters, their centroids, i.e. seed points in the d-dimensional
metric space of the patterns, are computed. Each pattern
is then assigned to the cluster with the nearest seed point
and new centroids are computed. The process is repeated
until the partitioning ceases to change. However, the pro-
cess of the computation of new centroids can be carried
out in two ways: (i) Keep the centroids fixed until the
distances of all patterns to the K centroids are computed
[4); (ii) Update centroids as frequently as one pattern is
found to be closer to the centroid of a cluster other than
the one it is assigned to. In this case, the pattern is imme-
diately reassigned and the centroids of the winning and
the losing clusters are updated [5]. This method is some-
times referred to as K-means. Note that for a parallel
machine, where the distances of the patterns from clus-
ter centroids can be computed simultaneously, the first
approach appears to be more efficient.

The neural net approach that we propose has many
similarities with the iterative scheme described above. As
will be explained later in more details, the major differ-
ence, however, is that the neural net allows a given pat-

32

tern to belong to several clusters until the final iteration.
That is, at least during the execution of the algorithm,
a given pattern belongs to all clusters, though with dif-
ferent weights. The closest conventional method to this
is the one proposed by Gordon and Henderson [6]. In
their method, however, the sum of the weights for every
pattern is restricted to one at any given iteration; thus,
it dose not possess the full flexibility of neural networks.

As for the initial cluster centroids, one may take the
first K points of the input data, which is very simple and
inexpensive; or if one suspects the input points are pre-
arranged in some special way, one may choose at random
any K points of the input data [7]. More elaborate and
expensive methods for choosing more promising initial
centroids have been proposed in the literature (see Ref.
[8] and [3]). Such methods, however, are not of interest
to us.

OPTIMIZATION WITH NEURAL NETS

It has been recognized in recent years that artificial
neural networks have computational properties [9,10].
The Hopfield model of neural network, which we use in
this work, is particularly suitable for solving certain op-
timization problems. A neuron is a simple nonlinear pro-
cessor that is connected to many (possibly all) other neu-
rons in the network; it adds up the signals it receives
from other neurons and fires a signal accordingly. The
state of the network, that is the firing rates or activi-
ties of the neurons, through interactions with each other,
change with time but eventually the network settles into
a steady state where the neuronal activities remain con-
stant. The energy of the Hopfield network is Lyapunov
(ie. it does not increase with time) and its minima are
the steady states of the network. It is this property of
neural networks that is used in optimization. The ap-
proach is to cast the problem in terms of an energy func-
tion that is then minimized by the corresponding network
as it evolves spontaneously from some randomly selected
initjal state to states of lower energy. The energy function
has typically many minima that represent valid solutions
to the problem; deeper minima correspond to good solu-
tions and the deepest minimum to the best solution.

In this paper we use analog neural nets, because they
outperform digital nets in solving optimization problems
[9,11]. Many problems of interest, including the problem
we address in this paper, can be cast in terms of an energy
function, E, that is quadratic in the neuronal activities
and has the form [9),

Ez"%ZiTiJ’ViVj—ZIﬁVi"‘lZ/ dz g~ (z).
=1 5=1 =1 4 =1 ()
1

Here n is the number of neurons in the network, and

vi(oLV; < 1) is the activity or firing rate of neuron
i. The first term in (1) is the interaction energy among
neurons, and the elements of the connection matrix, T5; =
Ty =— 3-3‘:%;7;, are completely determined from E. In the
gsecond term I; is the bias or activity threshold of neuron
i. The third term encourages the network to operate in
the interior of the n dimensional unit cube {0< V; <1}
that forms the state space of the system. In this term 7
is the self-decay time of the neurons, and g(u), a sigmoid
function, is the gain or transfer function of the neurons
that relates the input u; to the output V;. A standard
form for g, which we will also use, is

1

1 Uy
Vi =g(w) = 5(1+anh2t) = oo

(2)
where ug determines the steepness of gain. The neuronal
activities, V;, as well as the input signals, u;, depend on
time ¢. The evolution of the network is determined by
the n coupled ordinary differential equations, du;/dt =
—3E/3V;, which are

du,- g

_E. =-T+ZI‘€J'VJ'+I".

(3)
=1

We will set 7 = 1, so that time is measured in units of

r. Note that the bias-term can be eliminated from the

energy and instead incorporated into the gain function if

we define V; = g(u; — 71;).

To find a solution (ie. a minimum), we start the net-
work from a randomly selected state and let it evolve
freely until it reaches a minimum of the function E and
stops. As is usual in dealing with computationally in-
tractable problems, we find not just one but several solu-
tions by starting the network from different initial states,
and then take the best one as the solution which may
or may not be the optimum. Since a neural network con-
verges rapidly to a minimum we can afford to run it many
times thus ensuring that we find at least a very good solu-
tion. Below, we discuss how to construct an appropriate
network for solving this problem.

CONSTRUCTION OF THE ENERGY FUNC-
TION

We want to partition a set of N points in a 2-D plane
into the best K clusters (generalization to arbitrary di-
mensions is trivial) — best in the sense that sum of the
squares of the distances of the points from their respective
cluster centroids (i.e. sum of “within cluster variances”)
is minimised. We formulate the problem in a manner
that can be solved by a neural network; that is we cast
the problem in terms of an energy function that can be
minimized by the network.

The energy function will consist of two parts: (i) con-
gtraint terms which make certain a point, at the end of

33

the search, belongs to one and only one cluster; (ii) the
cost term which is the sum of the residuals and is the
function we actually wish to minimige. The formulation
can best be illustrated through an example. Let us con-
gider the case where we wish to partition N = 10 points
into K = 3 clusters. A possible solution (not necessarily
the best one) would be that, say, points 1, 2, 6 and 9 be-
long to cluster A, points 4 and 5 belong to cluster B, and
points 3, 7, 8 and 10 belong to cluster C. This particu-
lar solution can be represented by the 3x10 rectangular
array given in Table 1, where the rows are labeled by the
clusters and the columns are labeled by the points. The
elements of this matrix are 0 or 1 with the interpretation
that “element A1=1" indicates that point 1 belongs to
cluster A, “element B1=0" indicates that point 1 does
not belong to cluster B, and so on.

Table 1: A possible solution for partitioning 10 points
into 3 clusters.

Cluster Points
1 2 3 4 5 6 7 8 9 10
A 1 1 0 0 0 1 0 0 1 O
B 0o 0011 0 00 O0 O
C o 01 0 0 0 1 1 0 1

If we think of the elements of this matrix as the activities
of neurons (n = K X N neurons altogether), and denote
them by Vj;, where p and ¢ refer to the cluster and the
point, respectively, then the constraint part of the energy
function, E, can be expressed as

A K K B N K
E=-2—EZEVP"V¢"+‘EZ(ZVP€“1)2' (4)
3 q#p

i=1p=1 =1 p=1

where the coefficients A and B are positive constants.
The A-term has its minimum value (i.e. sero) if in each
column (representing a point) at most one neuron is active
and the rest are off. The B-term has its minimum value
(also sero) if the sum of activities in each column equals 1.
The two terms together enforce the syntaz of the solution
given in Table 1.

There is an additional constraint that we should, in
principle, include in the energy function: that each cluster
should contain at least one point. In terms of the golution
matrix of Table 1 it means that in each row there should
be at least one full¥{active neuron. Such a constraint can
be imposed by 3_,_; 8(1-T ¥, Vpi), where 8(z) =0
for <0 and ©(z)=1 for >0 is the step function.
However, since this term is nonanalytic its inclusion in
the energy function creates problems and a better strat-
egy appears to be to leave out this term and rather reject

those solutions that violate this constraint. In our sim-
ulations of neural networks (several thousand trials) the
solutions never violated this constraint. Therefore, it ap-
pears that the absence of this constraint from the energy
function is of little consequence.

To complete the energy function we must also formulate
the cost term. We denote the square of the distance of
point ¢ from the centroid of cluster p (i.e. the residual)
with R,; which is given by

(5)

Rpi = (2 = Xp) + (i — Y,)?,
where (z;, y;) are the coordinates of point 3, and (X, Y,)
are the coordinates of the centroid of cluster p. Here we
have chosen the Euclidean distance as the metric; but one
can define any metric one wants. Let us consider again
the solution represented by Table 1. The sum of residuals
or the cost for this solution is

(Rar+ Raz+ Rag+ Rao) + (Rpy+ Rps)

+(Rcs + Rer+ Reg + RC'IO): (6)

which can be written as
K N
> D R.VA (7
p=1li=1

Hence the energy function E, including cost and con-
straint, for this problem can be expressed in the final form

AN K K B X
E=EZZZVP¢VQ¢+§-E(EVM—1)2
i=1 p=1 q#p =1 p=1
c XX
+?Z:IZR,,.-VP"}, (8)
p=1é=1

where C is also a positive constant. When the constraints
(or the syntax) are satisfied the A-term and the B-term
vanish and the energy function, E, reduces to just the
cost term, therefore deep minima of E correspond to good
solutions, and the deepest minimum to the best solution.

The network dynamics, obtained from —3E/ AV, are

K K

du,.

% = —upi—AD Vo= B(d Vei—1)~CRuVpi+ 1.
e =1

(9)
Note that (8) is only the quadratic part of the energy
function corresponding to the first term in (1), and that
the two terms I; and —uy; in (9) come from the second
and third terms in (1), respectively.

To find a solution we assign random values between 0
and 1 to all the n = K x N neuronal activities, Vpi. Thus
the N points are partitioned into K clusters. Note that
the partitioning is not done in the proper sense that a
point belongs to a particular cluster and to no others;

34

rather, point 1 is partitioned among all the K clusters
with varying strengths that are the magnitudes of V;,
that is, we interpret V,; as the strength of hypothesis
that point ¢ belongs to cluster p. Hence the centroid of
cluster p is obtained from the weighted average

N N N N
Xo=D 2iVei/ D Vi, Y,= D%Vl D Vin.
i=1 i=1 i=1 i=1

(10)
As the state of the network changes with time the cen-
troids, as well as the residuals Ry, also change. Start-
ing from this randomly selected initial state the network
evolves toward states of lower energy according to the
equations of motion (9), until it reaches a minimum en-
ergy state and stops. The downhill motion of the network
on the energy surface is guided toward a proper solution
(one that satisfies the constraints) by the A- and B-terms
and toward solutions of good quality by the C-term. As
the network is searching for a solution the constraints are
most surely violated since most neurons are partially ac-
tive. Only at the end of the search when a solution is
found the clustering becomes unambiguous. Note that
the energy E also contains other minima that do not cor-
respond to solutions (ie. violate the syntax); such min-
ima when found by the network are of course rejected as
meaningless.

We remark that the cost term (7) can be written as a
linear function of activities such as RV, which is bias-
like rather than interaction-like. However, bias-like terms
are not as effective in breaking the symmetry among the
states that satisfy the syntax, and leave the energy land-
scape more flat. Hence it will not be as easy for the
network to find valid solutions as it frequently becomes
stuck in the middle of the n-dimensional unit cube. This
is confirmed in our simulations, where the rate of success
for finding valid solutions drops significantly when we use
the linear form for the cost.

For simulations we have chosen the following values for
the parameters of the energy function: A = B = 1,
C = 0.9/R,y, all I,; = 1, and the gain function pa-
rameter up = 0.1. Scaling parameter C with the average
residual Ry, is necessary to ensure good sgolutions, be-
cause as the network evolves, the residuals become gen-
erally smaller and the cost term becomes less effective in
driving the network toward good solutions; this rescaling
of parameter C keeps the cost term of the same order of
magnitude as the syntax terms.

PARALLEL IMPLEMENTATION

We have simulated the behavior of the neural net on
the MPP. To do this we first generate a random initial
state {V},;(t = 0)} and then solve the equations of motion
(9) to find which of the minima (or solutions) it converges
to. Solutions of ordinary differential equations, such as

the equations of motion, lend themselves very nicely to
a massively parallel computational approach. In addi-
tion, since we want to find several solutions starting from
different initial states — as is usual in computationally in-
tractable problems — we run several trials at once on the
MPP. Thus the speedup comes from parallel solution of
the differential equations as well as running several trials
at the same time.

We use the Euler method [12] with a fixed time step 6t
to solve the differential equations (9), i.e. we iterate the
set of n = K x N equations,

K
upi(t + 61) = upi(t) + 6t{—upi(t) — A > Vailt)
9#p

K
~B[Y_ Vai(t) - 1] - CRuVi(t) + I}, (11)

q=1
until the system converges to a stationary state. The only
stopping criterion we use is when the changes in the fir-
ing rates become insignificant, i.e. when all [Vpi(t+6 t) —
Voi(t)| < €, where € < 1. After the network converges to
a solution, we must check if it i a valid solution that sat-
isfies the syntax, i.e. for every point i we must have one
Vpi = 1 and all the rest Vo =0 for ¢ # p. In analog net-
works the activity of a neuron can never become exactly
0 or 1 and can only reach close to the limits. Therefore,
if Vi < no we take Vp; =0, and if V,,; > 1 — n; we take
Vpi = 1, where no and 5, are small positive numbers.
In the simulations we have chosen the following parame-
ter values: time step 6t = 103, convergence parameter

¢ = 10~4, and the syntax parameters no = 11 = 0.2.

Mapping onto a SIMD parallel processor was accom-
plished by assigning a unique processing element to each
data point. With this requirement, all of the necessary
operations reduce to simple array arithmetic, parallel
sums, row and column broadcasts, and global boolean
tests. All of these are the strong points of a massively
parallel processor such as the MPP. Since the MPP has
16384 processors, fewer data points allow more separate
trials to be run in parallel. Thus, for example, the 128
point case allowed for 128 trials with different starting
conditions to be run at the same time. The overhead to
the program to keep track of the different trials is trivial
since the data movement required is straightforward and
controlled by the programmer. The set of data points is
replicated for each trial run in parallel.

Each processor has stored in its memory its coordinate
values z; and y;, the neuronal activities Vpi, input signals
Uy, residues Ry, for p=1,---, K, convergence indicators
for each neuron, and other ancillary information. The
processing begins with the calculation of the centroids of
each cluster according to (10). This involves a simple ar-
ray multiplication of the z; and y; by V, for each cluster

35

p=1,---, K. This result is summed using the cascading
sum technique [13] and divided by the sum of Vi for each
cluster. These centroids are broadcast in parallel over the
remainder of the array using the MPP micrcoded broad-
cast primitive. This primitive, designed by Rudi Feiss
(described in [14]) is very fast using only 231 cycles to
broadcast a row or column — 128 32 bit numbers - to
the remainder of the rows or columns of the 128x128
array. Then we calculate the residues from (5) which
involves more array arithmetic. The new input signals
upi(t + 6t) are calculated from (11) and the new activi-
ties Vii(t + 8t) are calculated from the sigmoid function
(2). These are all array arithmetic operations. A boolean
mask for each cluster is created in parallel to record where
the new activities are different from the old activities by
more than the convergence parameter ¢. A logical ‘or’
(implemented as the ANY function in MPP Pascal) on
the masks determines whether the convergence criteria
has been met for all activities. This logical ‘or’ directly
translates into a hardware instruction on the MPP and
thus allows simultaneous checking of conditions which on
a serial processor would have to be done individually. Up-
dating of all neurons for each trial was continued, regard-
less of whether a particular trial had converged, until all
trials had converged. Thus unnecessary bookkeeping time
is eliminated.

Thus the speed on the MPP is obtained from, (i) the
mapping which allows most operations to be formulated
in terms of array arithmetic, (i) the movement of data
among the processing elements which can be done with
parallel algorithms, and (iii) the global boolean tests
which are done by the machine hardware. For the case
of 128 points to be clustered into 5 clusters, 128 trials
were run simultaneously. This required 19 seconds per
500 iterations. The corresponding CPU time on a VAX
8800 was 2940 seconds (a speedup of over 150 times), and
21100 seconds on a VAX 11/780 (a speedup of about 1100

times).
EXAMPLES

To study the performance of the neural net we have
tested it on some examples. In the first data set, there are
128 points divided among 5 clusters with within-cluster
Gaussian distributions (Fig. 1a). Here the 5 clusters are
rather well defined and out of the 128 trials the neural
net found the optimum clusters 128 times. The aver-
age number of iterations for convergence was 4263; since
§t = 10~ 37, the average convergence time is about 4.37,
where 7 is the decay time of a meuron. In VLSI im-
plementations of neural networks that are currently in
progress [1], the decay time of neurons, 7, is in the range
10~® — 10~ 3 second, hence the convergence time of the
network should be in the range of a few micro-seconds to
a few milli-seconds. Note that from numerical solution of

differential equations one can only obtain an estimate of
the actual convergence time, because the number of itera-
tions for convergence depends on the value of the conver-
gence parameter as well as the time step. Obviously if the
convergence parameter is made smaller it will take more
iterations for the network to meet the convergence crite-
rion, resulting in a higher estimate for the convergence
time. On the other hand if the time step is made smaller
by, say, a factor of 10, it will take fewer than 10 times
the number of iterations to converge, thus resulting in a
lower estimate for the convergence time. Fig. 2 shows in
more detail the number of iterations for the convergence
of all the 128 trials.

The conventional method of Forgy [4] in 128 trials
found the best clusters only 46 times and various other
solutions 82 times. The average number of iterations for
convergence was 7. Clearly, in this example, the neural
net outperforms the conventional method, in that it finds
the best solution much more frequently. On the other
hand, the conventional method takes far fewer iterations
to converge than the neural net. But we should bear in
mind that these are ssmulations of the neural net, and
that the number of iterations needed for convergence is
not the true measure of the processing time of the net-
work, The convergence time of an actual analog VLSI
network must be measured in r, the characteristic time
of a neuron, which is in the micro to milli-second range.”

To test the performance of the network in cases where
clusters are fuzsy, we started from the data points of Fig.
la, randomly selected 10% of the points and distributed
them uniformly throughout the unit square (Fig. 1b).
Thus we obtained 5 clusters with uniform background
noise. The neural net in 128 trials found the best clusters
28 times. It failed to find valid solutions statisfying the
syntax 46 times. This large number of failed solutions can
be interpreted as an indication that the clusters are fussy,
that there are outliers, and that perhaps the specified
number of clusters, K = 5, is too few. However, even
when the syntax is not satisfied we can extract a valid
solution with the following scheme. For each point ¢ get
the largest V,; to 1 and all the other Vgi with ¢ # p
to 0, and interpret this solution as the one favored by
the network, thus we obtain 128 solutions. Conventional
algorithms always find valid solutions and cannot give an
objective indication of the fusziness of clusters.

Similarly to Fig. 1b, we generated other data sets by
increasing the background noise to 25%, 50%, 75%, and
100% (i.e. no clusters). These data are shown in Fig.
lc-f. The results of partitioning the data among 5 clus-
ters obtained, in 128 trials, with the neural net and with
Forgy’s method are listed in Table 2. The average es-
timated convergence times for the network are given in
units of 7. Two points of note in this table are: (i) As the

36

5 clusters become less discernible the network increas-
ingly fails to satisfy the syntax indicating that clusters
are fussy and that 5 clusters are not sufficient. The con-
ventional method, on the other hand, always finds valid
solutions, and although the variety of solutions that it
finds increases (this is true in both methods) which may
be taken as a clue to the fussiness of clusters it is not as
objective an indicator as the failure to satisfy the syntax;
(i) When there are well defined clusters the neural net
performs better than the conventional techniques which is
reflected in the lower average x?2 (x? is the sum of within-
cluster variances) for solutions found by the neural net.
And as clusters become fussier the quality of solutions
found by both methods become comparable.

Table 2: In this table the results obtained by Forgy’s
conventional algorithm are compared with those by the
neural network. The Data refer to data points of Fig.
la-f. These are based on 128 trials.

Data Conventional
Iter | Best Var | Best% | Avg Var
a 7 0.62 36 1.23
b 8 1.06 34 1.57
c 8 1.95 12 2.27
d 10 2.94 2 3.14
e 10 3.88 10 4.11
f 10 4.13 2 4.64
Data Neural Net
Time | Best Var [Best%f | Avg Var | Synt%s
a 4 0.62 100 0.62 100
b 7 1.06 22 1.24 64
c 7 1.95 19 2.03 9
d 8 3.00 15 3.04 0
e 6 3.89 1 4.11 1
f 8 4.46 2 4.71 0

Iter: is the average number of iterations for convergence.
Best Var: is the variance of the best solution found.
Best%: is the percentage of trials that found the best
solution.

Avg Var: is the average variance of the solutions found.
Time: is the average estimated time of convergence in
units of 7.

Synt%: is the percentage of trials that found solutions
satisfying the syntax.

In Fig. 3, we have plotted the trajectories of the cen-
troids of the 5 clusters as a function of time for all the 128
trials for the data of Fig. 1a. It can be seen that although
the centroids start from different places in different trials,
they all eventually converge to the same 5 points which
are the true centroids of the 5 clusters. This clearly shows

that the network succeeds, in every trial, in finding the
structure in the data. In Fig. 4, we have plotted the cen-
troid trajectories for the data of Fig. 1f. The spreading
of trajetories (as contrasted to the contraction of trajec-
tories in Fig. 3) of different trials, shows that where there
is no underlying structure in the data, the network does
not prefer any particular clustering and hence finds many
different solutions.

CONCLUDING REMARKS

Preliminary results for clustering with neural networks
are promising. The neural net appears to outperform con-
ventional iterative techniques, when there are well defined
clusters since it finds better solutions more frequently.
And when clusters are fuzzy, or when the number of clus-
ters we specify is not compatible with the structure of
data, the neural net indicates that it cannot find valid
solutions easily, and that something may be wrong. This
indicator is an objective measure and hence more reliable
than the user supplied bounds and tolerances for conven-
tional techniques. Work on larger data sets is in progress.

The clustering criterion we have used in this paper,
that is minimum sum of within-cluster variances, results
in convex compact clusters. Often clusters are not round
or compact. By adding to the energy function, appropri-
ate terms that favor closeness of a point to its neighbors
(and not just to the cluster centroid), one can design a
network that finds non-convex elongated clusters of vari-
ous shapes.

4

Simulations of the neural net on the MPP for the clus-
tering problem are two to three orders of magnitude faster
than simulations on serial machines such as the VAX 8800
and VAX 11/780. The speedup is due to parallel solution
of the differential equations that govern the behavior of
the network, as well as running several trials at the same
time. However, the real benefit of neural nets may lie
in the future when they can be mapped on analog chips.
There are forecasts that analog VLSI neural nets will be-
come available in several years [1]. These devices will
have processing times in the micro to milli-second range,
making their performance comensurate with human per-
ceptual abilities.

References

(1} C. Mead, “Real-time analog computation in VLSI
neural networks”, in the First Annual International
Neural Networks Society Meeting (Boston, 1988).

[2] W. Feller, An Introduction to Probability Theory and
Its Applications, 2nd edition (John Wiley, 1959) Vol.
1, p. 58.

37

[3] A.K.Jainand R.C. Dubes, Algorithms for Clustering
Data (Prentice Hall, 1988).

[4] E.-W. Forgy, “Cluster analysis of multivariate data:
efficiency versus interpretability of classifications”,
Biometric Soc. Meetings, Riverside, California. Ab-
stract in Biometrics, 21, 768 (1965).

(5] J.B. MacQueen, “Some Methods for Classification
and Analysis of Multivariate Observations”, Pro-
ceedings of Fifth Berkeley Symposium on Mathemat-
ical Statistics and Probability, Vol. 1, p. 281 (1967).

(6] A.D. Gordon and J.T. Henderson, “Algorithm for
Euclidean sum of squares classification”, Biometrics,
38, 355 (1977).

[7] D.J. McRae, “MIKCA: A FORTRAN 1V iterative
k-means cluster analysis program”, Behavioral Sci-
ence, 16, 423 (1971).

(8] M.R. Anderberg, Cluster Analysis for Applications
(Academic Press, 1973).

(9] J.J. Hopfield and D.W. Tank, “Neural computation
of decisions in optimization problems”, Biological
Cybernetics, 52, 141 (1985).

[10] Neural Networks for Computing, edited by J.S.

Denker (American Institute of Physics, 1986).

[11) B. Kamgar-Parsi and B. Kamgar-Parsi, “An efficient
model of neural networks for optimization”, in Pro-
ceedings of the IEEE First International Conference
on Neural Networks, edited by M. Caudill and C.

Butler, Vol.3, p. 785 (1987).

C.W. Gear, Numerical Initial Value Problems in Or-
dinary Differential Equations (Prentice-Hall, 1971).

[12]

[13] H.S. Stone, “Problems of Parallel Computation”, in
Complezity of Sequential and Parallel Numerical Al-
gorithms, edited by J.F. Traub (Academic Press,

1973).

[14] J.E. Devaney, “The MPP - a Totally Different Ap-
proach to Programming”, presented at the IEEE
Computer Society Workshop on Computer Architec-
ture for Pattern Analysis and Image Data Base Man-

agement (1985).

|
| ; : b
[° o ’;p °a, ’
o ° Nl o o o
' PO A ;ifi", o® o*j s i;::
: ¥, ¥ s 8,
R .
® L
o a
ooy . Comg 0
o % a °
. oA
B a*
o c o o d
%o o9 ° 0 o
. o o
° o ° e o a
Y I Pt LA
P o0 o ° o ° o o0
T L R
° . °ﬂ‘,§u o ° ° 0@ °o% o ©
< a®
° ° o0 o ° °°°
° ° ° a 3° s
e o ® .0, v - 70
caéi Y o
° ® ¢ a ® 3 °
at o3 e o
Ll o® ° e o o 3 8, f
° e’ o © ° e 29 %0 o i
L] o ° a°°° o g“n ° 2
o ;% o o N L
o & o 3 a ° ° ° % 4
o o o o
K Q‘J’n:o o ;“Q s o ° aq o’
° o © § :" o N o ° ° oo;, 0
Sttt A R
o © @ Q e
T TR T e R
oF e a2 . R Fig. 3. Trajectories of the five cluster centroids for all 128
*® o e @ o ° ° . . .
. bes L Lt T e et trials for the data in Fig. 1a. (0 % background). Lower
%a » .
left corner of Fig. la. corresponds to back top corner in

this figure

Fig. 1. 128 points divided among 5 clusters and re-
spectively 0,10,25,50,75,100 % uniform background in
a,b,c,d,e,f.

150

3 100l 4
&
] -
H
Q
s |
3
€ r 4
x F
S 5o£_ E
k R
[} 1 1
o] 500 1000 1500 2000

‘vap

Fig. 2. Number of trials not converged versus iteration
for the data in Fig. 1a. (0 % background) (loop is the Fig. 4. Trajectories of the five cluster centroids for the

iteration number}. data in Fig. 1f. (uniform distribution - 100% back-
ground).

38

